
The next generation QEMU
functional testing framework

Daniel P. Berrangé <berrange@redhat.com>
 Thomas Huth <thuth@redhat.com>

a com
ic-style picture of a friendly, sm

iling em
u that is standing like a captain in a

bridge of a space ship sim
ilar to the old star trek series.

Legal

● Disclaimer: Opinions are our own and not necessarily the views of
our employer

● The somewhat absurd emu pictures have been generated with AI
(Gemini; prompts noted inline). All other content in this presentation
is the work of humans.

2

a cartoon em
u as a solicitor in court

a friendly emu that holds a test tube with some chemicals
that just exploded and covered the emu in coal dust

comic-style picture of a friendly and smiling emu that flies
through the air using rockets

A little bit of history

● QEMU had many test suites
(unit tests, “qtests”, “iotests”, TCG-tests, …)

● Missing end-to-end functional testing of VMs
with real payloads (kernel, etc.)

● Needed to write tests more easily. e.g. python + helpers for assets & caching
● Maintainers from the Avocado project offered help in 2018
● The Avocado-based functional test suite was introduced (initially called

“acceptance” tests, later renamed to “avocado” tests)

3

a com
ic-style picture of a friendly em

u that is standing in a huge am
ount of avocados

The issues with Avocado for QEMU

● Avocado is a fairly complex system
● The average QEMU developer is a C hacker, probably not a Python expert
● If something did not work, QEMU developers rarely understood how to fix it
● Little proactive help from the Avocado developers after the initial code drop

➢ But no other QEMU maintainers felt responsible for the subsystem

● Attempts to upgrade Avocado to a newer release failed for various reasons
➢ Stuck with outdated & unmaintained Avocado v88.1 (from 2021)

● Last straw in 2024: Avocado v88.1 not compatible with Python 3.12
➢ A solution had to be found ASAP

4

(ok, this picture w
as rather created w

ith gim
p from

 the previous one,
 since the A

I w
as not able to com

e up w
ith a nice picture of an em

u
 putting its head into the ground)

Re-considering the testing situation

● Avocado was performing two jobs, providing
➢ (a) test runner / harness
➢ (b) test creation infrastructure APIs

● 2018: A zoo of historically grown test harness for various test subsystems
● 2024: Meson provides the parallel test runner for most QEMU frameworks

➢ Avocado tests were an oddball here (v88 was single-threaded)
➢ Avocado test harness results difficult to interpret & complicated debugging failures

● 2022: “Introduce new acpi/smbios python tests using biosbits”
➢ Tried a new stand-alone Python-based functional test separate from Avocado

● Could Avocado tests be migrated to standalone python tests run by Meson ?

5

com
ic-style im

age of a friendly em
u that scratches its head and looks

like it is thinking hard

Example of an Avocado test (slightly modified)

from avocado_qemu import QemuSystemTest, wait_for_console_pattern
from avocado.utils import archive

class CanonA1100Machine(QemuSystemTest):

 timeout = 90

 @skipUnless(os.getenv(QEMU_TEST_FLAKY_TESTS), 'Test might be unstable')
 def test_arm_canona1100(self):
 """
 :avocado: tags=arch:arm
 :avocado: tags=machine:canon-a1100
 """
 tar_url = ('https://qemu-advcal.gitlab.io/…/day18.tar.xz')
 tar_hash = '068b5fc4242b29381acee94713509f8a876e9db6'
 file_path = self.fetch_asset(tar_url, asset_hash=tar_hash)
 archive.extract(file_path, self.workdir)
 self.vm.add_args('-bios', self.workdir + '/day18/barebox.canon-a1100.bin')
 self.vm.set_console()
 self.vm.launch()
 wait_for_console_pattern(self, 'running /env/bin/init')

6

a cartoon em
u view

ing the m
atrix

⬌

Example of an Avocado test (slightly modified)

from avocado_qemu import QemuSystemTest, wait_for_console_pattern
from avocado.utils import archive

class CanonA1100Machine(QemuSystemTest):

 timeout = 90

 @skipUnless(os.getenv(QEMU_TEST_FLAKY_TESTS), 'Test might be unstable')
 def test_arm_canona1100(self):
 """
 :avocado: tags=arch:arm
 :avocado: tags=machine:canon-a1100
 """
 tar_url = ('https://qemu-advcal.gitlab.io/…/day18.tar.xz')
 tar_hash = '068b5fc4242b29381acee94713509f8a876e9db6'
 file_path = self.fetch_asset(tar_url, asset_hash=tar_hash)
 archive.extract(file_path, self.workdir)
 self.vm.add_args('-bios', self.workdir + '/day18/barebox.canon-a1100.bin')
 self.vm.set_console()
 self.vm.launch()
 wait_for_console_pattern(self, 'running /env/bin/init')

7

Basic test class

a cartoon em
u view

ing the m
atrix

Example of an Avocado test (slightly modified)

from avocado_qemu import QemuSystemTest, wait_for_console_pattern
from avocado.utils import archive

class CanonA1100Machine(QemuSystemTest):

 timeout = 90

 @skipUnless(os.getenv(QEMU_TEST_FLAKY_TESTS), 'Test might be unstable')
 def test_arm_canona1100(self):
 """
 :avocado: tags=arch:arm
 :avocado: tags=machine:canon-a1100
 """
 tar_url = ('https://qemu-advcal.gitlab.io/…/day18.tar.xz')
 tar_hash = '068b5fc4242b29381acee94713509f8a876e9db6'
 file_path = self.fetch_asset(tar_url, asset_hash=tar_hash)
 archive.extract(file_path, self.workdir)
 self.vm.add_args('-bios', self.workdir + '/day18/barebox.canon-a1100.bin')
 self.vm.set_console()
 self.vm.launch()
 wait_for_console_pattern(self, 'running /env/bin/init')

8

Timeout setting for the test runner

Subtest method

a cartoon em
u view

ing the m
atrix

Example of an Avocado test (slightly modified)

from avocado_qemu import QemuSystemTest, wait_for_console_pattern
from avocado.utils import archive

class CanonA1100Machine(QemuSystemTest):

 timeout = 90

 @skipUnless(os.getenv(QEMU_TEST_FLAKY_TESTS), 'Test might be unstable')
 def test_arm_canona1100(self):
 """
 :avocado: tags=arch:arm
 :avocado: tags=machine:canon-a1100
 """
 tar_url = ('https://qemu-advcal.gitlab.io/…/day18.tar.xz')
 tar_hash = '068b5fc4242b29381acee94713509f8a876e9db6'
 file_path = self.fetch_asset(tar_url, asset_hash=tar_hash)
 archive.extract(file_path, self.workdir)
 self.vm.add_args('-bios', self.workdir + '/day18/barebox.canon-a1100.bin')
 self.vm.set_console()
 self.vm.launch()
 wait_for_console_pattern(self, 'running /env/bin/init')

9

Decorator # a cartoon em
u view

ing the m
atrix

Example of an Avocado test (slightly modified)

from avocado_qemu import QemuSystemTest, wait_for_console_pattern
from avocado.utils import archive

class CanonA1100Machine(QemuSystemTest):

 timeout = 90

 @skipUnless(os.getenv(QEMU_TEST_FLAKY_TESTS), 'Test might be unstable')
 def test_arm_canona1100(self):
 """
 :avocado: tags=arch:arm
 :avocado: tags=machine:canon-a1100
 """
 tar_url = ('https://qemu-advcal.gitlab.io/…/day18.tar.xz')
 tar_hash = '068b5fc4242b29381acee94713509f8a876e9db6'
 file_path = self.fetch_asset(tar_url, asset_hash=tar_hash)
 archive.extract(file_path, self.workdir)
 self.vm.add_args('-bios', self.workdir + '/day18/barebox.canon-a1100.bin')
 self.vm.set_console()
 self.vm.launch()
 wait_for_console_pattern(self, 'running /env/bin/init')

10

Tags

a cartoon em
u view

ing the m
atrix

Example of an Avocado test (slightly modified)

from avocado_qemu import QemuSystemTest, wait_for_console_pattern
from avocado.utils import archive

class CanonA1100Machine(QemuSystemTest):

 timeout = 90

 @skipUnless(os.getenv(QEMU_TEST_FLAKY_TESTS), 'Test might be unstable')
 def test_arm_canona1100(self):
 """
 :avocado: tags=arch:arm
 :avocado: tags=machine:canon-a1100
 """
 tar_url = ('https://qemu-advcal.gitlab.io/…/day18.tar.xz')
 tar_hash = '068b5fc4242b29381acee94713509f8a876e9db6'
 file_path = self.fetch_asset(tar_url, asset_hash=tar_hash)
 archive.extract(file_path, self.workdir)
 self.vm.add_args('-bios', self.workdir + '/day18/barebox.canon-a1100.bin')
 self.vm.set_console()
 self.vm.launch()
 wait_for_console_pattern(self, 'running /env/bin/init')

11

Asset handling

a cartoon em
u view

ing the m
atrix

Requirements for a new test framework
What? Replacement

Test runner Meson test runner (+ pycotap)

Test discovery meson.build + unittest class (+ pycotap)

Basic test class Recycle glue code (based on unittest class)

Decorators Python unittest class (+ adding our own)

Asset download, caching & extracting Replace with our own implementation

Logging Python logging + custom setup

Tags (for selecting subsets of tests) No replacement (possibly decorators?)

12

a cartoon em
u w

riting a list of parts

Test files discovery and timeouts

● Avocado
➢ Scanned all *.py files on invocation for available tests
➢ A “timeout” variable within the test class for test timeout

● New functional tests
➢ .py files and timeouts listed in tests/functional/*/meson.build files

● Slightly more work to add a test…
➢ … but it’s the common pattern with meson to explicitly list files

● Meson allows to specify a priority
➢ Meson can run all subsystem tests in parallel (qtests, iotests, unit, …)
➢ High priority for tests with large timeout makes long tests start first

13

com
ic-style picture of an friendly, sm

iling em
u that looks through a looking glass

How to handle subtests with meson

● Python ‘unittest’ class can be used for discovering & running subtest
methods within a file. For running test standalone, simply add:

if __name__ == '__main__':
 QemuSystemTest.main()

● By default, the meson test runner treats one file as one big test
● For showing progress on subtest level: TAP – Test anything protocol
● Tried a bunch of implementations (‘tappy’, …), but none worked very well with

the meson test runner (issues with stderr)
● Finally found ‘Pycotap’ that does the job and is very small!

➢ Shipped as a wheel with QEMU now

14

a cartoon em
u surrounded by lots of baby em

us

Handle large test assets

● Most tests use assets (kernel, initrd, rootfs, firmware, etc.)
● Downloading assets is potentially quite slow

➢ could cause test timeouts if done on demand

● Avocado had a local cache of assets that must be retained
● Asset class instances declared as class level variables
● Launching test with ‘QEMU_TEST_PRECACHE=1’ pre-caches asset files
● If any assets fail to download, CI jobs will skip the affected tests

➢ …except HTTP 404 codes, which are likely non-transient errors

● Added locking/waiting logic for downloading assets in parallel

15

a cartoon em
u picking penguins from

 a tree

⬌

File management

● Tests need to reference & create files in various locations
● Helper APIs provided on QemuBaseTest to standardize locations

➢ self.socket_dir() => location for UNIX sockets
➢ self.data_file(...) => source file relative to tests/functional dir
➢ self.build_file(...) => build system created file relative to root of build dir
➢ self.scratch_file(...) => any file created by test case, auto-deleted on exit
➢ self.log_file(...) => any file recording log messages, uploaded as asset in CI jobs
➢ self.plugin_file(...) => any TCG plugin relative to tests/tcg/plugins/

● APIs construct paths from components
➢ qualified_path = self.scratch_file(“foo”, “bar”, “wizz”)

■ Not
➢ qualified_path = self.scratch_file(“foo/bar/wizz”)

16

a cartoon em
u in a library covered in falling books

Archive management

● Many assets are compressed or archives
● Lots of different python APIs for each format
● Helper APIs provided on QemuBaseTest to give easy access
● Archive extraction (tar, zip, cpio, deb)

➢ self.archive_extract(self.ASSET_….., ….) => unpacks to ‘scratch_file’ location

● File decompression (gz, xz, zstd)
➢ self.uncompress(self.ASSET_…, ….) => uncompressed to ‘scratch_file’ location

● Formats guessed from archive URL path file extension

17

a cartoon em
u w

heeling a crate aw
ay from

 the view
er in a w

arehouse
w

ith crates as far as the eye can see

Decorators

● Typical python testing practice is to use decorators to control execution
● Functional test system provides standard decorators

➢ skipIfMissingCommands => check ‘binary’ in $PATH
➢ skipIfOperatingSystem => exclude listed host OS
➢ skipIfNotMachine => require a specific VM machine type
➢ skipFlakyTest => don’t run non-deterministic tests (GitLab issue URL required)
➢ skipUntrustedTest => don’t run potentially dangerous tests
➢ skipBigDataTest => don’t run tests which create huge files (> ~500 MB)
➢ skipSlowTest => don’t run tests which are excessively slow (many minutes)
➢ skipIfMissingImports => check ‘module’ in $PYTHONPATH
➢ skipLockedMemoryTest => require permission to lock RAM

18

com
ic-style picture of a friendly em

u that decorates a w
all w

ith a picture
of a fem

ale em
u.

Example of a new functional test
from qemu_test import QemuSystemTest, Asset, skipFlakyTest
from qemu_test import wait_for_console_pattern

class CanonA1100Machine(QemuSystemTest):

 ASSET_BIOS = Asset('https://qemu-advcal.gitlab.io/…/day18.tar.xz',
 '28e71874ce985be66b7fd1345ed88cb2523b982f899c8d2900d6353054a1be49')

 @skipFlakyTest('https://gitlab.com/qemu-project/qemu/-/issues/xyz')
 def test_arm_canona1100(self):
 self.set_machine('canon-a1100')

 bios = self.archive_extract(self.ASSET_BIOS,
 member="day18/barebox.canon-a1100.bin")
 self.vm.set_console()
 self.vm.add_args('-bios', bios)
 self.vm.launch()
 wait_for_console_pattern(self, 'running /env/bin/init')

if __name__ == '__main__':
 QemuSystemTest.main()

19

a cartoon em
u inside the m

atrix dodging flying penguins

Example of a new functional test
from qemu_test import QemuSystemTest, Asset, skipFlakyTest
from qemu_test import wait_for_console_pattern

class CanonA1100Machine(QemuSystemTest):

 ASSET_BIOS = Asset('https://qemu-advcal.gitlab.io/…/day18.tar.xz',
 '28e71874ce985be66b7fd1345ed88cb2523b982f899c8d2900d6353054a1be49')

 @skipFlakyTest('https://gitlab.com/qemu-project/qemu/-/issues/xyz')
 def test_arm_canona1100(self):
 self.set_machine('canon-a1100')

 bios = self.archive_extract(self.ASSET_BIOS,
 member="day18/barebox.canon-a1100.bin")
 self.vm.set_console()
 self.vm.add_args('-bios', bios)
 self.vm.launch()
 wait_for_console_pattern(self, 'running /env/bin/init')

if __name__ == '__main__':
 QemuSystemTest.main()

20

a cartoon em
u inside the m

atrix dodging flying penguins

Replacement
for the tags

Example of a new functional test
from qemu_test import QemuSystemTest, Asset, skipFlakyTest
from qemu_test import wait_for_console_pattern

class CanonA1100Machine(QemuSystemTest):

 ASSET_BIOS = Asset('https://qemu-advcal.gitlab.io/…/day18.tar.xz',
 '28e71874ce985be66b7fd1345ed88cb2523b982f899c8d2900d6353054a1be49')

 @skipFlakyTest('https://gitlab.com/qemu-project/qemu/-/issues/xyz')
 def test_arm_canona1100(self):
 self.set_machine('canon-a1100')

 bios = self.archive_extract(self.ASSET_BIOS,
 member="day18/barebox.canon-a1100.bin")
 self.vm.set_console()
 self.vm.add_args('-bios', bios)
 self.vm.launch()
 wait_for_console_pattern(self, 'running /env/bin/init')

if __name__ == '__main__':
 QemuSystemTest.main()

21

a cartoon em
u inside the m

atrix dodging flying penguins

New
asset

handling

Example of a new functional test
from qemu_test import QemuSystemTest, Asset, skipFlakyTest
from qemu_test import wait_for_console_pattern

class CanonA1100Machine(QemuSystemTest):

 ASSET_BIOS = Asset('https://qemu-advcal.gitlab.io/…/day18.tar.xz',
 '28e71874ce985be66b7fd1345ed88cb2523b982f899c8d2900d6353054a1be49')

 @skipFlakyTest('https://gitlab.com/qemu-project/qemu/-/issues/xyz')
 def test_arm_canona1100(self):
 self.set_machine('canon-a1100')

 bios = self.archive_extract(self.ASSET_BIOS,
 member="day18/barebox.canon-a1100.bin")
 self.vm.set_console()
 self.vm.add_args('-bios', bios)
 self.vm.launch()
 wait_for_console_pattern(self, 'running /env/bin/init')

if __name__ == '__main__':
 QemuSystemTest.main()

22

a cartoon em
u inside the m

atrix dodging flying penguins

New
decorator

For running
standalone

Troubleshooting

● Run tests standalone outside meson for easier debugging (strace)
➢ $ export PYTHONPATH=../python:../tests/functional
➢ $ export QEMU_TEST_QEMU_BINARY=$PWD/qemu-system-x86_64
➢ $ pyvenv/bin/python3 ../tests/functional/test_file.py

● Getting information out of CI infra is always a challenge
● Logging is critical to understanding failures

➢ $BUILD/tests/functional/x86_64/$TEST_FILE.$TEST_CLASS.$TEST_METHOD/
➢ base.log python ‘⇒ logging’ output from test class (includes CLI args of QEMU)
➢ console.log serial console output from QEMU guest⇒
➢ default.log stdout/err from spawned QEMU⇒

● All log files are uploaded as artifacts in GitLab CI jobs

23

a cartoon em
u pulling apart com

puters in a server room
 tangled in

cables

⬌

Integration into the test suites

● “make check-functional” (or “make check-functional-ppc” etc.)
● Don’t want to do this by default during a normal “make check”

(a good internet connection is required for downloading the assets!)
● But some tests don’t need assets, i.e. should be run by default

➢ Need a way to distinguish them

● Existing test suites already have speed classes:
➢ quick, slow and thorough

● Only quick tests are run by default, i.e. add tests without assets here
● Add functional tests with assets to the thorough category

➢ make -j$(nproc) check SPEED=thorough

24

a cartoon em
u w

orking on an assem
bly line in a com

puter factory

Demo

25

a cartoon em
u presenting a new

 com
puter product on stage for the “E

m
u

Tools” com
pany launch event

Future plans

● Evicting obsolete assets from the download cache
● Improve error handling, e.g. if QEMU crashes
● Enforce mypy, flake8, pylint, etc; format with ‘black’
● Add more test for uncovered areas

➢ If you know how to test one of the missing machines, please help:

https://wiki.qemu.org/Testing/Machines

26

a cartoon em
u piloting a flying saucer across the galaxy

a cartoon em
u in a room

 of broken com
puters in the

style of the “this is fine” m
em

e

Any questions ?
(Or find us in the hallway later)

	The next generation QEMU functional testing framework
	Legal
	A little bit of history
	The issues with Avocado for QEMU
	Re-considering the testing situation
	Example of an Avocado test (slightly modified)
	Example of an Avocado test (slightly modified) (2)
	Example of an Avocado test (slightly modified) (3)
	Example of an Avocado test (slightly modified) (4)
	Example of an Avocado test (slightly modified) (5)
	Example of an Avocado test (slightly modified) (6)
	Requirements for a new test framework
	Test files discovery and timeouts
	How to handle subtests with meson
	Handle large test assets
	File management
	Archive management
	Decorators
	Example of a new functional test
	Example of a new functional test (2)
	Example of a new functional test (3)
	Example of a new functional test (4)
	Troubleshooting
	Integration into the test suites
	Demo
	Future plans
	Slide 27

