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Legal

● Disclaimer: Opinions are our own and not necessarily the views of 
our employer

● The somewhat absurd emu pictures have been generated with AI 
(Gemini; prompts noted inline). All other content in this presentation 
is the work of humans.
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# a cartoon em
u as a solicitor in court

# a friendly emu that holds a test tube with some chemicals 
that just exploded and covered the emu in coal dust

# comic-style picture of a friendly and smiling emu that flies 
through the air using rockets



A little bit of history

● QEMU had many test suites
(unit tests, “qtests”, “iotests”, TCG-tests, …)

● Missing end-to-end functional testing of VMs
with real payloads (kernel, etc.) 

● Needed to write tests more easily. e.g. python + helpers for assets & caching
● Maintainers from the Avocado project offered help in 2018
● The Avocado-based functional test suite was introduced (initially called 

“acceptance” tests, later renamed to “avocado” tests)
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The issues with Avocado for QEMU

● Avocado is a fairly complex system
● The average QEMU developer is a C hacker, probably not a Python expert
● If something did not work, QEMU developers rarely understood how to fix it
● Little proactive help from the Avocado developers after the initial code drop

➢ But no other QEMU maintainers felt responsible for the subsystem

● Attempts to upgrade Avocado to a newer release failed for various reasons
➢ Stuck with outdated & unmaintained Avocado v88.1 (from 2021)

● Last straw in 2024: Avocado v88.1 not compatible with Python 3.12
➢ A solution had to be found ASAP
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Re-considering the testing situation

● Avocado was performing two jobs, providing
➢ (a) test runner / harness
➢ (b) test creation infrastructure APIs

● 2018: A zoo of historically grown test harness for various test subsystems
● 2024: Meson provides the parallel test runner for most QEMU frameworks

➢ Avocado tests were an oddball here (v88 was single-threaded)
➢ Avocado test harness results difficult to interpret & complicated debugging failures

● 2022: “Introduce new acpi/smbios python tests using biosbits” 
➢ Tried a new stand-alone Python-based functional test separate from Avocado

● Could Avocado tests be migrated to standalone python tests run by Meson ?
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Example of an Avocado test (slightly modified)

from avocado_qemu import QemuSystemTest, wait_for_console_pattern
from avocado.utils import archive

class CanonA1100Machine(QemuSystemTest):

    timeout = 90

    @skipUnless(os.getenv(QEMU_TEST_FLAKY_TESTS), 'Test might be unstable')
    def test_arm_canona1100(self):
        """
        :avocado: tags=arch:arm
        :avocado: tags=machine:canon-a1100
        """
        tar_url = ('https://qemu-advcal.gitlab.io/…/day18.tar.xz')
        tar_hash = '068b5fc4242b29381acee94713509f8a876e9db6'
        file_path = self.fetch_asset(tar_url, asset_hash=tar_hash)
        archive.extract(file_path, self.workdir)
        self.vm.add_args('-bios', self.workdir + '/day18/barebox.canon-a1100.bin')
        self.vm.set_console()
        self.vm.launch()
        wait_for_console_pattern(self, 'running /env/bin/init')
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Example of an Avocado test (slightly modified)

from avocado_qemu import QemuSystemTest, wait_for_console_pattern
from avocado.utils import archive

class CanonA1100Machine(QemuSystemTest):

    timeout = 90

    @skipUnless(os.getenv(QEMU_TEST_FLAKY_TESTS), 'Test might be unstable')
    def test_arm_canona1100(self):
        """
        :avocado: tags=arch:arm
        :avocado: tags=machine:canon-a1100
        """
        tar_url = ('https://qemu-advcal.gitlab.io/…/day18.tar.xz')
        tar_hash = '068b5fc4242b29381acee94713509f8a876e9db6'
        file_path = self.fetch_asset(tar_url, asset_hash=tar_hash)
        archive.extract(file_path, self.workdir)
        self.vm.add_args('-bios', self.workdir + '/day18/barebox.canon-a1100.bin')
        self.vm.set_console()
        self.vm.launch()
        wait_for_console_pattern(self, 'running /env/bin/init')
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Example of an Avocado test (slightly modified)

from avocado_qemu import QemuSystemTest, wait_for_console_pattern
from avocado.utils import archive

class CanonA1100Machine(QemuSystemTest):

    timeout = 90

    @skipUnless(os.getenv(QEMU_TEST_FLAKY_TESTS), 'Test might be unstable')
    def test_arm_canona1100(self):
        """
        :avocado: tags=arch:arm
        :avocado: tags=machine:canon-a1100
        """
        tar_url = ('https://qemu-advcal.gitlab.io/…/day18.tar.xz')
        tar_hash = '068b5fc4242b29381acee94713509f8a876e9db6'
        file_path = self.fetch_asset(tar_url, asset_hash=tar_hash)
        archive.extract(file_path, self.workdir)
        self.vm.add_args('-bios', self.workdir + '/day18/barebox.canon-a1100.bin')
        self.vm.set_console()
        self.vm.launch()
        wait_for_console_pattern(self, 'running /env/bin/init')
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Example of an Avocado test (slightly modified)

from avocado_qemu import QemuSystemTest, wait_for_console_pattern
from avocado.utils import archive

class CanonA1100Machine(QemuSystemTest):

    timeout = 90

    @skipUnless(os.getenv(QEMU_TEST_FLAKY_TESTS), 'Test might be unstable')
    def test_arm_canona1100(self):
        """
        :avocado: tags=arch:arm
        :avocado: tags=machine:canon-a1100
        """
        tar_url = ('https://qemu-advcal.gitlab.io/…/day18.tar.xz')
        tar_hash = '068b5fc4242b29381acee94713509f8a876e9db6'
        file_path = self.fetch_asset(tar_url, asset_hash=tar_hash)
        archive.extract(file_path, self.workdir)
        self.vm.add_args('-bios', self.workdir + '/day18/barebox.canon-a1100.bin')
        self.vm.set_console()
        self.vm.launch()
        wait_for_console_pattern(self, 'running /env/bin/init')
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Example of an Avocado test (slightly modified)

from avocado_qemu import QemuSystemTest, wait_for_console_pattern
from avocado.utils import archive

class CanonA1100Machine(QemuSystemTest):

    timeout = 90

    @skipUnless(os.getenv(QEMU_TEST_FLAKY_TESTS), 'Test might be unstable')
    def test_arm_canona1100(self):
        """
        :avocado: tags=arch:arm
        :avocado: tags=machine:canon-a1100
        """
        tar_url = ('https://qemu-advcal.gitlab.io/…/day18.tar.xz')
        tar_hash = '068b5fc4242b29381acee94713509f8a876e9db6'
        file_path = self.fetch_asset(tar_url, asset_hash=tar_hash)
        archive.extract(file_path, self.workdir)
        self.vm.add_args('-bios', self.workdir + '/day18/barebox.canon-a1100.bin')
        self.vm.set_console()
        self.vm.launch()
        wait_for_console_pattern(self, 'running /env/bin/init')
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Example of an Avocado test (slightly modified)

from avocado_qemu import QemuSystemTest, wait_for_console_pattern
from avocado.utils import archive

class CanonA1100Machine(QemuSystemTest):

    timeout = 90

    @skipUnless(os.getenv(QEMU_TEST_FLAKY_TESTS), 'Test might be unstable')
    def test_arm_canona1100(self):
        """
        :avocado: tags=arch:arm
        :avocado: tags=machine:canon-a1100
        """
        tar_url = ('https://qemu-advcal.gitlab.io/…/day18.tar.xz')
        tar_hash = '068b5fc4242b29381acee94713509f8a876e9db6'
        file_path = self.fetch_asset(tar_url, asset_hash=tar_hash)
        archive.extract(file_path, self.workdir)
        self.vm.add_args('-bios', self.workdir + '/day18/barebox.canon-a1100.bin')
        self.vm.set_console()
        self.vm.launch()
        wait_for_console_pattern(self, 'running /env/bin/init')
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Requirements for a new test framework
What? Replacement

Test runner Meson test runner (+ pycotap)

Test discovery meson.build + unittest class (+ pycotap)

Basic test class Recycle glue code (based on unittest class)

Decorators Python unittest class (+ adding our own)

Asset download, caching & extracting Replace with our own implementation

Logging Python logging + custom setup

Tags (for selecting subsets of tests) No replacement (possibly decorators?)
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Test files discovery and timeouts

● Avocado 
➢ Scanned all *.py files on invocation for available tests
➢ A “timeout” variable within the test class for test timeout

● New functional tests
➢ .py files and timeouts listed in tests/functional/*/meson.build files

● Slightly more work to add a test…
➢ … but it’s the common pattern with meson to explicitly list files

● Meson allows to specify a priority
➢ Meson can run all subsystem tests in parallel (qtests, iotests, unit, …)
➢ High priority for tests with large timeout makes long tests start first
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How to handle subtests with meson

● Python ‘unittest’ class can be used for discovering & running subtest 
methods within a file. For running test standalone, simply add:
 

if __name__ == '__main__':
    QemuSystemTest.main()

● By default, the meson test runner treats one file as one big test
● For showing progress on subtest level: TAP – Test anything protocol
● Tried a bunch of implementations (‘tappy’, …), but none worked very well with 

the meson test runner (issues with stderr)
● Finally found ‘Pycotap’ that does the job and is very small!

➢ Shipped as a wheel with QEMU now
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Handle large test assets

● Most tests use assets (kernel, initrd, rootfs, firmware, etc.)
● Downloading assets is potentially quite slow

➢ could cause test timeouts if done on demand

● Avocado had a local cache of assets that must be retained
● Asset class instances declared as class level variables
● Launching test with ‘QEMU_TEST_PRECACHE=1’ pre-caches asset files
● If any assets fail to download, CI jobs will skip the affected tests

➢ …except HTTP 404 codes, which are likely non-transient errors

● Added locking/waiting logic for downloading assets in parallel
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File management

● Tests need to reference & create files in various locations
● Helper APIs provided on QemuBaseTest to standardize locations

➢ self.socket_dir() => location for UNIX sockets
➢ self.data_file(...) => source file relative to tests/functional dir
➢ self.build_file(...) => build system created file relative to root of build dir
➢ self.scratch_file(...) => any file created by test case, auto-deleted on exit
➢ self.log_file(...) => any file recording log messages, uploaded as asset in CI jobs
➢ self.plugin_file(...) => any TCG plugin relative to tests/tcg/plugins/

● APIs construct paths from components
➢ qualified_path = self.scratch_file(“foo”, “bar”, “wizz”)

■ Not
➢ qualified_path = self.scratch_file(“foo/bar/wizz”)
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Archive management

● Many assets are compressed or archives
● Lots of different python APIs for each format
● Helper APIs provided on QemuBaseTest to give easy access
● Archive extraction (tar, zip, cpio, deb)

➢ self.archive_extract(self.ASSET_….., ….) => unpacks to ‘scratch_file’ location

● File decompression (gz, xz, zstd)
➢ self.uncompress(self.ASSET_…, ….) => uncompressed to ‘scratch_file’ location

● Formats guessed from archive URL path file extension
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Decorators

● Typical python testing practice is to use decorators to control execution
● Functional test system provides standard decorators

➢ skipIfMissingCommands => check ‘binary’ in $PATH
➢ skipIfOperatingSystem => exclude listed host OS
➢ skipIfNotMachine => require a specific VM machine type
➢ skipFlakyTest => don’t run non-deterministic tests (GitLab issue URL required)
➢ skipUntrustedTest => don’t run potentially dangerous tests
➢ skipBigDataTest => don’t run tests which create huge files (> ~500 MB)
➢ skipSlowTest => don’t run tests which are excessively slow (many minutes)
➢ skipIfMissingImports => check ‘module’ in $PYTHONPATH
➢ skipLockedMemoryTest => require permission to lock RAM
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Example of a new functional test
from qemu_test import QemuSystemTest, Asset, skipFlakyTest
from qemu_test import wait_for_console_pattern

class CanonA1100Machine(QemuSystemTest):

    ASSET_BIOS = Asset('https://qemu-advcal.gitlab.io/…/day18.tar.xz',
        '28e71874ce985be66b7fd1345ed88cb2523b982f899c8d2900d6353054a1be49')

    @skipFlakyTest('https://gitlab.com/qemu-project/qemu/-/issues/xyz')
    def test_arm_canona1100(self):
        self.set_machine('canon-a1100')

        bios = self.archive_extract(self.ASSET_BIOS,
                                    member="day18/barebox.canon-a1100.bin")
        self.vm.set_console()
        self.vm.add_args('-bios', bios)
        self.vm.launch()
        wait_for_console_pattern(self, 'running /env/bin/init')

if __name__ == '__main__':
    QemuSystemTest.main()
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Example of a new functional test
from qemu_test import QemuSystemTest, Asset, skipFlakyTest
from qemu_test import wait_for_console_pattern

class CanonA1100Machine(QemuSystemTest):

    ASSET_BIOS = Asset('https://qemu-advcal.gitlab.io/…/day18.tar.xz',
        '28e71874ce985be66b7fd1345ed88cb2523b982f899c8d2900d6353054a1be49')

    @skipFlakyTest('https://gitlab.com/qemu-project/qemu/-/issues/xyz')
    def test_arm_canona1100(self):
        self.set_machine('canon-a1100')

        bios = self.archive_extract(self.ASSET_BIOS,
                                    member="day18/barebox.canon-a1100.bin")
        self.vm.set_console()
        self.vm.add_args('-bios', bios)
        self.vm.launch()
        wait_for_console_pattern(self, 'running /env/bin/init')

if __name__ == '__main__':
    QemuSystemTest.main()
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Example of a new functional test
from qemu_test import QemuSystemTest, Asset, skipFlakyTest
from qemu_test import wait_for_console_pattern

class CanonA1100Machine(QemuSystemTest):

    ASSET_BIOS = Asset('https://qemu-advcal.gitlab.io/…/day18.tar.xz',
        '28e71874ce985be66b7fd1345ed88cb2523b982f899c8d2900d6353054a1be49')

    @skipFlakyTest('https://gitlab.com/qemu-project/qemu/-/issues/xyz')
    def test_arm_canona1100(self):
        self.set_machine('canon-a1100')

        bios = self.archive_extract(self.ASSET_BIOS,
                                    member="day18/barebox.canon-a1100.bin")
        self.vm.set_console()
        self.vm.add_args('-bios', bios)
        self.vm.launch()
        wait_for_console_pattern(self, 'running /env/bin/init')

if __name__ == '__main__':
    QemuSystemTest.main()
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Example of a new functional test
from qemu_test import QemuSystemTest, Asset, skipFlakyTest
from qemu_test import wait_for_console_pattern

class CanonA1100Machine(QemuSystemTest):

    ASSET_BIOS = Asset('https://qemu-advcal.gitlab.io/…/day18.tar.xz',
        '28e71874ce985be66b7fd1345ed88cb2523b982f899c8d2900d6353054a1be49')

    @skipFlakyTest('https://gitlab.com/qemu-project/qemu/-/issues/xyz')
    def test_arm_canona1100(self):
        self.set_machine('canon-a1100')

        bios = self.archive_extract(self.ASSET_BIOS,
                                    member="day18/barebox.canon-a1100.bin")
        self.vm.set_console()
        self.vm.add_args('-bios', bios)
        self.vm.launch()
        wait_for_console_pattern(self, 'running /env/bin/init')

if __name__ == '__main__':
    QemuSystemTest.main()
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Troubleshooting

● Run tests standalone outside meson for easier debugging (strace)
➢ $ export PYTHONPATH=../python:../tests/functional
➢ $ export QEMU_TEST_QEMU_BINARY=$PWD/qemu-system-x86_64
➢ $ pyvenv/bin/python3 ../tests/functional/test_file.py

● Getting information out of CI infra is always a challenge
● Logging is critical to understanding failures

➢ $BUILD/tests/functional/x86_64/$TEST_FILE.$TEST_CLASS.$TEST_METHOD/
➢ base.log  python ‘⇒ logging’ output from test class (includes CLI args of QEMU)
➢ console.log  serial console output from QEMU guest⇒
➢ default.log  stdout/err from spawned QEMU⇒

● All log files are uploaded as artifacts in GitLab CI jobs
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Integration into the test suites

● “make check-functional” (or “make check-functional-ppc” etc.)
● Don’t want to do this by default during a normal “make check”

(a good internet connection is required for downloading the assets!)
● But some tests don’t need assets, i.e. should be run by default

➢ Need a way to distinguish them

● Existing test suites already have speed classes:
➢ quick, slow and thorough

● Only quick tests are run by default, i.e. add tests without assets here
● Add functional tests with assets to the thorough category

➢ make -j$(nproc) check SPEED=thorough
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Demo
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Future plans

● Evicting obsolete assets from the download cache
● Improve error handling, e.g. if QEMU crashes
● Enforce mypy, flake8, pylint, etc; format with ‘black’
● Add more test for uncovered areas

➢ If you know how to test one of the missing machines, please help:

https://wiki.qemu.org/Testing/Machines
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# a cartoon em
u in a room

 of broken com
puters in the 

style of the “this is fine” m
em

e

Any questions ?
(Or find us in the hallway later)
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